title: Qutuam Computation

#+STARTUP: overview

Basic states and operations

ketbra

  • Ket:

  • Bra:

  • Production of Ket and Bra:

states

If a measurement will collapse either on |0⟩ or |1⟩, which means |0⟩ or |1⟩ is its eigentstate, we call it as Z-measurement, and denote as .

If a measurement will collapse either on |+⟩ or |-⟩, which means |+⟩ or |-⟩ is its eigentstate, we call it as X-measurement, and denote as .

If a measurement will collapse either on |+i⟩ or |-i⟩, which means |+i⟩ or |-i⟩ is its eigentstate, we call it as Y-measurement, and denote as .

The coefficient has to be because of normalisation.

Measurements

for states basis of{ } and { }, the measurement of state on { } is .

Single Qutantum circuits

  • bit flip: :

  • phase flip: :

  • bit & phase filp: :

  • Hadamard gate: , ,

  • Phase gate: ,

Multipartite quantum states

we use tensor products to describe multiple states only such can to described by of other states are called uncorrelated, otherweise it's correlated, and when some fully correlated are called entangled.

XOR gate

#+header: :headers '("\\usepackage{qcircuit}")
\Qcircuit @C=1em @R=1em {
\lstick{\ket{x}} & \ctrl{1} & \rstick{\ket{x}} \qw \\
\lstick{\ket{y}} & \targ   & \rstick{\ket{x \oplus y }} \qw
}

Photo Link here

Bell states

Example of fully correlated states (maximally entangled),

Create Bell states

#+header: :headers '("\\usepackage{qcircuit}")
\Qcircuit @C=1em @R=1em {
\lstick{\ket{i}_A} & \gate{H} & \ctrl{1} &  \qw \\
\lstick{\ket{j}_B} &  \qw    &   \targ   &  \qw
  }

Photo Link here

Teleportion

If Alise and Bob share the same bell states , Now Alias want to send stetas to Bob,

  • Alice preforms a measurement in the Bell basis
  • she send her classical output (i,j) to Bob
  • Bob apply to get the orignal .
#+header: :headers '("\\usepackage{qcircuit}")
\Qcircuit @C=1em @R=.7em {
 \lstick{\ket{\phi_s}_A}          & \multigate{1}{Bell Meas} & \cw & \cw    & \cwx[2] \\
 \lstick{\ket{\varphi^{00}_A}}    & \ghost{Bell Meas}        & \cw & \cwx[1]   \\
 \lstick{\ket{\varphi^{00}_B}}    &  \qw                    & \qw & \gate{\sigma_x^j}& \gate{\sigma_x^j }& \qw &  \rstick{\ket{\phi_s}_B} 
}

Photo Link Here

Deutsche-Jose

Bit oracle

#+header: :headers '("\\usepackage{qcircuit}")

Photo Link here

, : phase oracle, which is independt of y, .

Hadamard on n qubits

for , ,

for for , , , ,

Deutsche Jose algorithm

#+header: :headers '("\\usepackage{qcircuit}")
\Qcircuit @C=1em @R=1em {
\lstick{\ket{0}}  & \gate{H} & \multigate{2}{U_f} & \gate{H} & \meter & \cw  & \rstick{\ket{y_0}} \\
\lstick{\ket{0}} & \gate{H} & \ghost{U_f} & \gate{H} & \meter & \cw  & \rstick{\ket{y_1}} \\
\lstick{\ket{0}} & \gate{H} & \ghost{U_f} & \gate{H} & \meter & \cw  & \rstick{\ket{y_n}} 
}

Photo Link here

Proof:

because , so ,

The Probability to measure the Zero( ) string is: if f is constant, and if f is balanced

Gover's Algrithmus